

 API Documentation

TU Latch | API Documentation

 2

CONTENT

1.1. Authentication .. 3

1.1.1. The Authorization Header .. 3

1.1.2. The X-11Paths-Date Header ... 5

1.2. Aplication API ... 6

1.2.1. Pair Account ... 6

1.2.2. Check Status .. 8

1.2.3. Unpair Account .. 11

1.2.4. Modify Status ... 12

1.2.5. Manage Operations ... 13

1.2.6. User History ... 16

1.2.7. Manage instances .. 18

1.2.8. Set CommonName .. 23

1.3. User API ... 24

1.3.1. Manage Applications ... 24

1.3.2. Developer Subscription.. 27

1.4. TOTP Server .. 29

1.4.1. Create TOTP .. 29

1.4.2. Delete TOTP .. 32

1.4.3. Get TOTP ... 33

1.4.4. Validate TOTP ... 35

1.5. Authorization Controls .. 36

2.1. Add a Webhook .. 40

2.2. Webhook Notifications .. 41

4.1. What is deep linking? .. 43

4.2. Deep Linking in Latch Applications... 44

TU Latch | API Documentation

 3

1. API Documentation

1.1. Authentication

This page describes how authentication works in the Latch service.

All requests to the Latch API must be signed. The signing process is a

simplified two-way Oauth protocol.

Each HTTP request to the API must be accompanied by two authentication

headers: Authorization and Date.

1.1.1. The Authorization Header

The Authorization header must have the following format:

11PATHS requestId requestSignature

• requestId can be either an applicationId or a userId, depending on which

API is being accessed by the request.

• 11PATHS is a constant that determines the authentication method.

• applicationId is an alphanumeric identifier obtained when registering a

new application.

• requestSignature is a signature derived from the URL, parameters,

custom headers, and date of the current request, all hashed using a

Secret that is also obtained through the applicationId when registering

the application.

The request signature is a Base64-encoded, HMAC-SHA1 signed string.

The string must be created by following this process:

1. Start with an empty string.

2. Append the method name in uppercase. Currently, only GET, POST,

PUT, and DELETE values are supported.

3. Append a line separator, "\n" (Unicode code point U+000A).

4. Append a string with the current date in the exact format yyyy-MM-dd

HH:mm:ss. This format should be self-explanatory, but note that

everything is numeric and should be zero-padded as needed to ensure

TU Latch | API Documentation

 4

all numbers have two digits (except for the year, which has four digits).

You must retain this value to use it in the Date header. The signature

check will fail if they do not match.

5. Append a line separator, "\n" (Unicode code point U+000A).

6. Serialize all headers specific to this application (not every HTTP header

of the request). All names of these headers start with X-11paths-.

○ Convert all header names to lowercase.

○ Sort the headers by header name in ascending alphabetical order.

○ For each header value, convert multi-line headers into a single

line by replacing newline characters "\n" with single spaces " ".

○ Create an empty string. Then, for each header after sorting and

transforming, add to the newly created string the header name

followed by a colon ":" and then the header value. Each

name:value must be separated from the next by a single space " ".

○ Trim the string to ensure it does not contain any leading or trailing

spaces.

7. Append a line separator, "\n" (Unicode code point U+000A).

8. Append the URL-encoded query string, which consists of the path

(starting from the first slash) and the query parameters. The query string

must not include the hostname or the port, and it must not contain any

leading or trailing spaces.

9. Only for POST or PUT requests: append a line separator, "\n" (Unicode

code point U+000A).

10. Only for POST or PUT requests: serialize the request parameters as

follows. The parameter name and its value are the UTF-8 representation

of their URL encoding.

○ Sort the parameters by parameter name in ascending alphabetical

order and then by parameter value.

○ Create an empty string. Then, for each parameter after sorting,

add to the newly created string the parameter name followed by

an equals sign "=" and the parameter value. Each name=value

pair must be separated from the next by an ampersand "&".

○ Trim the string to ensure it does not contain any leading or trailing

spaces.

TU Latch | API Documentation

 5

Once the string has been created following the process described above, it

must be signed with the HMAC-SHA1 algorithm using the Secret obtained

when registering the application. After signing, the raw binary data must be

Base64-encoded. The resulting string is the requestSignature that should

be added to the Authorization header.

1.1.2. The X-11Paths-Date Header

The X-11Paths-Date header contains the current UTC date value and must

have the following format:

yyyy-MM-dd HH:mm:ss

Where yyyy is the year, MM is the month number, dd is the day number, HH is

the hour in 24-hour format, mm is the minute within the hour, and ss is the

second within the minute. All values must be zero-padded so that they are all

two-digit values, except for the year, which is four digits.All values must be zero-

padded to ensure two digits, except for the year, which has four digits.

It is very important that the value and format of this header are exactly the same

as those used in the process of creating requestSignature for the Authorization

header, as explained above.

Note that you can continue to use the standard HTTP Date header in any

format you wish (for example, RFC 1123). Just make sure you do not mix them

up and always use the value in X-11Paths-Date in the signing process. The API

will ignore the standard Date header.

Errors

Below is a list of possible error conditions that can occur during authentication:

● Error 101: Invalid Authorization header format

● Error 102: Invalid application signatura

● Error 103: Authorization header missing

● Error 104: Date header missing

● Error 108: Invalid date format

TU Latch | API Documentation

 6

● Error 109: Request expired, date is too old

● Error 111: User not authorized

● Error 112: Invalid user signatura

● Error 113: Secret signing this request is not authorized to perform this

operation

1.2. Aplication API

En esta sección se detalla la información relacionada con la interacción de la

aplicación con la API de Latch.

1.2.1. Pair Account

This page describes the preferred method to pair accounts using a pairing token

that users can obtain through the mobile apps.

TU Latch | API Documentation

 7

Authentication

To use this request, you must authenticate your app using your applicationId

and sign it as explained in the Authentication section.

Request

To pair with the token API, make an HTTP GET request to the following

endpoint:

https://latch.tu.com/api/2.0/pair/{token}

where token is a six-character alphanumeric token that should be obtained from

the user, who in turn retrieved it through the mobile app.

Additionally, and completely optionally, you can include a parameter

commonName where you include an identifier of the user in your system. This

identifier will be shown in the support tool (LST) and help you identify the user

more easily.

https://latch.tu.com/api/2.0/pair/{token}?commonName=YOUR_COMMON

_NAME

Response

If everything goes well, the API will return a response like this:

{"data":{"accountId":"..."}}

where account is a 64-character alphanumeric token that uniquely identifies the

account being paired with this application. You should store this value for later

use in subsequent calls such as status or unpair.

Errors

Below is a list of possible error conditions that can occur when attempting to

use this API:

TU Latch | API Documentation

 8

• Error 205: Account and application already paired

This error will be returned when a user whose account is already paired

with this application has generated the specified token.

• Error 206: Pairing token not found or expired

The most likely cause of this error is the use of an expired token. Tokens

must be used to perform the pairing within 60 seconds of their creation;

after that period, they expire. Another obvious reason for this error is that

the request includes a fabricated token.

• Error 401: Missing parameter in API call

The cause of this error is that a required parameter is missing or empty.

• Error 406: Invalid parameter length

This error will be returned when the commonName parameter has a

length greater than 100 characters.

1.2.2. Check Status

This page describes how to check the status of an account and the different

possible responses.

TU Latch | API Documentation

 9

Authentication

To use this request, you must authenticate your app using your applicationId

and sign it as explained in the Authentication section.

Request

To use the status API, make an HTTP GET request to the following endpoint:

https://latch.tu.com/api/2.0/status/{accountId}

where accountId is a 64-character alphanumeric token that uniquely identifies

the account whose status you are checking, obtained using the pairing method.

If you have created one or more operations to be controlled by individual

Latches, you can check the status of each operation using its operation

identifier:

https://latch.tu.com/api/2.0/status/{accountId}/op/{operationId}

IMPORTANT: If you have created operations for an application, you should

NOT need to check the status using the application ID. The same is true if you

have nested operations. Once an operation has child operations, the application

ID of the parent operation should not be used for status calls.

You can do it, and it will work, but in the mobile apps, applications with

operations or operations with children don't have the options of One-Time-

Passwords, Scheduler setup and Autolock. Instead, they act as a master switch

for all children operations, allowing to lock/unlock them all at once

Optionally, if you want to check the status:

● Without including any one-time password in the response, it is possible

by adding the /nootp suffix to any of the two endpoints.

● Without sending push notifications to mobile apps, it is possible by

adding the /silent suffix to any of the two endpoints.

https://latch.tu.com/api/2.0/status/{accountId}/nootp

https://latch.tu.com/api/2.0/status/{accountId}/silent

https://latch.tu.com/api/2.0/status/{accountId}/nootp/silent

TU Latch | API Documentation

 10

https://latch.tu.com/api/2.0/status/{accountId}/op/{operationId}

/nootp/silent

Response

If everything goes well, the API will return a JSON response that looks like this:

{"data":{"operations":{"applicationId":{"status":"...",

"two_factor":{...}, "operations":{...}}}}}

There are two possible values for the status field: on and off.

This two_factor field is optional and when present, it has the following format:

"two_factor":{"token":"...","generated":...}

where token is a six-character alphanumeric value that is also sent to the user's

mobile device and must be checked to complete the operation. The generated

field is the timestamp at which the token was generated, and it can be used to

control the time window during which the token can be validated.

The operations object, if present, contains the child operations and is

recursively defined by the same fields: status, two_factor and operations.

Errors

The following is a list of possible error conditions that can occur when trying to

use this API:

• Error 201: Account not paired

This error occurs when the account identifier is incorrect or is not

currently paired with the application requesting the status check.

• Error 401: Missing parameter in API call

• Error 704: Silent notification is not applied due to subscription limits

TU Latch | API Documentation

 11

1.2.3. Unpair Account

This page describes how to unpair a Latch account.

Authentication

To use this request, you must authenticate your app using your applicationId

and sign it as explained in the Authentication section.

Request

To unpair, make an HTTP GET request to the following endpoint:

https://latch.tu.com/api/2.0/unpair/{accountId}

where accountId is a 64-character alphanumeric token that uniquely identifies

the account to be unpaired, which was obtained through the pairing method.

Response

If everything goes well, the API will return an empty JSON response that looks

like this:

{}

TU Latch | API Documentation

 12

Errors

Below is a list of possible error conditions that may occur when attempting to

use this API:

• Error 201: Account not paired (API > 0.6)

• Error 204: Error unpairing account (API <= 0.6)

This error occurs when the account identifier is incorrect or is not

currently paired with the application requesting the unpair.

• Error 401: Missing parameter in API call

1.2.4. Modify Status

This page describes how to modify the status of a Latch account.

Authentication

To use this request, you must authenticate your app using your applicationId

and sign it as explained in the Authentication section.

Request

To use the external modifications API, make an HTTP POST request to the

following endpoints depending on whether you want to lock or unlock the latch

for an application or operation:

https://latch.tu.com/api/2.0/lock/{accountId}

https://latch.tu.com/api/2.0/unlock/{accountId}

where accountId is a 64-character alphanumeric token that uniquely identifies

the account whose status is being modified, obtained using the pairing method.

If you have created one or more operations to be controlled by individual

Latches, you can modify the status of each operation using its operation

identifier:

TU Latch | API Documentation

 13

https://latch.tu.com/api/2.0/lock/{accountId}/op/{operationId}

https://latch.tu.com/api/2.0/unlock/{accountId}/op/{operationId}

Response

If everything goes well, the API will return an empty JSON response that looks

like this:

{}

Errors

Below is a list of possible error conditions that may occur when attempting to

use this API:

• Error 111: User not authorized

This error occurs when the current subscription plan of the user does not

include the support tools.

• Error 201: Account not paired

This error occurs when the account identifier is incorrect or is not

currently paired with the application requesting the status check.

• Error 401: Missing parameter in API call

1.2.5. Manage Operations

This page describes how to manage the operations of an application, allowing

you to add, update, or delete operations.

Authentication

To use this request, you must authenticate your app using your applicationId

and sign it as explained in the Authentication section.

TU Latch | API Documentation

 14

Requests

Add an operation

To add an operation, make an HTTP PUT request to the following endpoint:

https://latch.tu.com/api/2.0/operation

Request parameters:

● parentId: The identifier of the application or operation to which we want

to add the new operation to be created.

● name: A new name for the operation.

● two_factor (optional): Value for two-factor authentication.

Possible values: MANDATORY, OPT_IN, DISABLED. Default value is

DISABLED.

● lock_on_request (optional): Value for locking after querying.

Possible values: MANDATORY, OPT_IN, DISABLED. Default value is

DISABLED.

Response

If everything goes well, the API will return a JSON response that looks like this,

where operationId is the identifier of the newly created operation:

{data:{"operationId":"..."}}

Modify an operation

To modify an operation, make an HTTP POST request to the following

endpoint:

https://latch.tu.com/api/2.0/operation/{operationId}

'OperationId' will be the identifier of such operation.

Request parameters:

● name: A new name for the operation.

TU Latch | API Documentation

 15

● two_factor (optional): Value for two-factor authentication.

Possible values: MANDATORY, OPT_IN, DISABLED. Default value is

DISABLED.

● lock_on_request (optional): Value for locking after querying.

Possible values: MANDATORY, OPT_IN, DISABLED. Default value is

DISABLED.

Response

If everything goes well, the API will return an empty JSON response that looks

like this:

{}

Remove an operation

To remove an operation, make an HTTP DELETE request to the following

endpoint:

https://latch.tu.com/api/2.0/operation/{operationId}

where operationId is the identifier of that operation.

Response

If everything goes well, the API will return an empty JSON response that looks

like this:

{}

Get operations

To get your existing operations, perform an HTTP GET request in the following
endpoint:

https://latch.tu.com/api/2.0/operation

https://latch.tu.com/api/2.0/operation/{operationId}

https://latch.tu.com/api/2.0/operation

TU Latch | API Documentation

 16

Response

If everything goes well, the API will return a response that looks like this:

{"data":{"operations":{"operationId":{"name":"...","two_factor":

"...","lock_on_request":"...","operations":{...}}}}}

Errors

Below is a list of possible error conditions that can occur when attempting to

use this API:

• Error 301: Application or Operation not found

This error occurs when the operation identifier used does not match a

valid operation identifier.

• Error 401: Missing parameter in API call

• Error 703: Application or Operation not created due to subscription limits

This error occurs when trying to create an operation outside the

subscription limits.

1.2.6. User History

This page describes how to query the history of an account.

Authentication

To use this request, you must authenticate your app using your applicationId

and sign it as explained in the Authentication section.

Request

To use the history API, make an HTTP GET request to the following endpoint:

https://latch.tu.com/api/2.0/history/{accountId}/{from}/{to}

where accountId is a 64-character alphanumeric token that uniquely identifies

the account whose history is being queried, obtained using the pairing method.

TU Latch | API Documentation

 17

The parameters from and to, which are optional, allow filtering the history

between two dates. Both parameters are numeric and correspond to the

number of milliseconds elapsed since January 1, 1970, 00:00:00 GMT. (Epoch

Time).

Response

If everything goes well, the API will return a JSON response that looks like this:

{ "data": { "applicationId": { ... }, "count": ...,

"clientVersion": { ... } }, "lastSeen": ..., "history": [{ "t":

..., "action": "...", "what": "...", "value": "...", "was":

"...", "name": "...", "userAgent": "...", "ip": "..." }] } }

where the information contained is:

• applicationId: Information about the application and its operations.

• count: The number of elements contained in the history array.

• clientVersion: Information about the mobile clients used by the user.

• lastSeen: The time at which the user last activity was recorded.

• history: An array containing the actions performed on the account, either

by the user or by the developer.

o t: The time at which the action was performed.

o action: Whether it is an action performed by the user

(USER_UPDATE), by the developer (DEVELOPER_UPDATE) or a

status query (get).

o what: The parameter on which the action was performed

(status, two_factor, from, etc.).

o was: The previous value of the action if it was a modification.

o value: The current value of the action.

o name: The name of the application or operation on which the

action was performed.

o ip / userAgent: The IP and User-Agent of whoever performed the

action.

TU Latch | API Documentation

 18

Errors

Below is a list of possible error conditions that can occur when attempting to

use this API:

• Error 111: User not authorized

This error occurs when the current subscription plan of the user does not

include support tools.

• Error 201: Account not paired

This error occurs when the account identifier is incorrect or is not

currently paired with the application requesting the status check.

• Error 401: Missing parameter in API call

• Error 405: History response is limited to 1000 entries for the selected

date range

This non-fatal error occurs when the response should contain more items

than the maximum that is returned (1000).

1.2.7. Manage instances

This page describes how to manage the instances of an application or operation

associated with a specific accountId, as well as how to interact with them.

Authentication

To use this request, you must authenticate your app using your applicationId

and sign it as explained in the Authentication section.

Requests

Add an instance

To add an instance to an application, make an HTTP PUT request to the

following endpoint:

https://latch.tu.com/api/2.0/instance/{accountId}

TU Latch | API Documentation

 19

To add instances to an operation, make an HTTP PUT request to the following

endpoint:

https://latch.tu.com/api/2.0/instance/{accountId}/op/{operationI

d}

where accountId is a 64-character alphanumeric token that uniquely identifies

the account whose instances are being modified. This would have been

previously obtained using the pairing method.

Request parameters:

● instances: The name of the instances to create in the format

instances=name, and you can create several simultaneously separated

by &.

Example: instances=Name_1&instances=Name_2&instances=Name_N

Response

If everything goes well, the API will return a JSON response that looks like this,

where the various instancesId are the identifiers of the newly created

instances that must be stored to interact with them:

{"data":{"instances":{"instanceId_1":"Name_1","instanceId_2":"Na

me_2","instanceId_N":"Name_N", ...}}}

Delete an instance

To delete an instance from an application, make an HTTP DELETE request to

the following endpoint:

https://latch.tu.com/api/2.0/instance/{accountId}/i/{instanceId}

To delete an instance from an operation, make an HTTP DELETE request to

the following endpoint:

https://latch.tu.com/api/2.0/instance/{accountId}/op/{operationI

d}/i/{instanceId}

TU Latch | API Documentation

 20

where instanceId is the identifier of that instance and operationId is the identifier

of the operation to which it belongs.

Response

If everything goes well, the API will return an empty JSON response that looks

like this:

{}

Get instances

To get instances from an application, perform an HTTP GET request in the next

endpoint:

https://latch.tu.com/api/2.0/instance/{accountId}

To get the instances of an operation, make an HTTP GET request to the

following endpoint:

https://latch.tu.com/api/2.0/instance/{accountId}/op/{operationI

d}

where instanceId is the identifier of that instance and operationId is the

identifier of the operation to which it belongs.

Response

If everything goes well, the API will return a response that looks like this:

{"data": {"instanceId_1": {"name": "MyInstance1", "two_factor":

"MANDATORY|DISABLED|OPT_IN", "lock_on_request":

"MANDATORY|DISABLED|OPT_IN"}, "instanceId_2": {"name": "...",

"two_factor": "...", "lock_on_request": "..."}}}

TU Latch | API Documentation

 21

Edit an instance

To edit an instance of an application, make an HTTP POST request to the

following endpoint:

https://latch.tu.com/api/2.0/instance/{accountId}/i/{instanceId}

To edit an instance of an operation, make an HTTP POST request to the

following endpoint:

https://latch.tu.com/api/2.0/instance/{accountId}/op/{operationI

d}/i/{instanceId}

where instanceId is the identifier of that instance and operationId is the

identifier of the operation to which it belongs.

Request parameters:

● name (Optional): A new name for the instance.

● two_factor (optional): Value for two-factor authentication.

Possible values: MANDATORY, OPT_IN, DISABLED. Default value is

DISABLED.

● lock_on_request (optional): Value for locking after querying.

Possible values: MANDATORY, OPT_IN, DISABLED. Default value is

DISABLED.

Response

If everything goes well, the API will return an empty JSON response that looks

like this:

{}

Check the status of an instance

To check the status of an instance, make an HTTP GET request to one of the

following endpoints (for instances of an application or instances of an

operation):

https://latch.tu.com/api/2.0/status/{accountId}/i/{instanceId}

TU Latch | API Documentation

 22

https://latch.tu.com/api/2.0/status/{accountId}/op/{operationId}

/i/{instanceId}

Both the response and the other additional options such as silent or nootp are

detailed in the Account Status section.

Modify the status of an instance

Modify the status of an instance, make an HTTP POST request to one of the

following endpoints (for instances of an application or instances of an

operation):

https://latch.tu.com/api/2.0/lock/{accountId}/i/{instanceId}

https://latch.tu.com/api/2.0/lock/{accountId}/op/{operationId}/i

/{instanceId}

https://latch.tu.com/api/2.0/unlock/{accountId}/i/{instanceId}

https://latch.tu.com/api/2.0/unlock/{accountId}/op/{operationId}

/i/{instanceId}

The 'Modify status' section contains the response and additional information

Errors

Below is a list of possible error conditions that can occur when attempting to

use this API:

• Error 301: Application or Operation not found

This error occurs when the operation identifier used does not match a

valid operation identifier.

• Error 302: Instance not found

This error occurs when the instance identifier used does not match a

valid instance identifier.

• Error 401: Missing parameter in API call

TU Latch | API Documentation

 23

• Error 703: Application or Operation not created due to subscription

limits

This error occurs when trying to create an instance outside the

subscription limits.

1.2.8. Set CommonName

This page describes how to edit a common name for a paired user.

Authentication

To use this request, you must authenticate your app using your applicationId

and sign it as explained in the Authentication section.

Request

Set a common name

To set a common name, make an HTTP POST request to the following

endpoint:

https://latch.tu.com/api/3.0/commonName/{accountId}/

Request parameters:

● commonName: The service provider identifier for the paired user

Response

If everything goes well, the API will return an empty JSON response that looks

like this:

{}

TU Latch | API Documentation

 24

Errors

Below is a list of possible error conditions that can occur when attempting to

use this API:

• Error 201: Account not paired

This error occurs when the account identifier is incorrect or is not

currently paired with the application requesting the status check.

• Error 401: Missing parameter in API call

The cause of this error is that a required parameter is missing or empty.

• Error 406: Invalid parameter length

This error will be returned when the commonName parameter has a

length greater than 100 characters.

1.3. User API

1.3.1. Manage Applications

This page describes how to manage a user's applications, allowing you to add,

update, or delete applications.

Authentication

To use this request, you must authenticate your app using your userId and sign

it as explained in the Authentication section.

Requests

Add an application

To add an application, make an HTTP PUT request to the following endpoint:

https://latch.tu.com/api/2.0/application

Request parameters:

TU Latch | API Documentation

 25

• name: The new name for the application.

• contactEmail: Contact email for the application.

• contactPhone: Contact phone number for the application.

• two_factor (Optional): Value for two-factor authentication.

Possible values: MANDATORY, OPT_IN, DISABLED. Default value is

DISABLED.

• lock_on_request (Optional): Value for locking after querying.

Possible values: MANDATORY, OPT_IN, DISABLED. Default value is

DISABLED.

Response

If everything goes well, the API will return a JSON response that looks like this,

where applicationId is the identifier of the newly created application:

{data:{"applicationId":"...", "secret":"..."}}

Modify an application

To modify an application, make an HTTP POST request to the following

endpoint:

https://latch.tu.com/api/2.0/application/{applicationId}

where applicationId is the identifier of that application.

Request parameters:

● name: The new name for the application.

● contactEmail: Contact email for the application.

● contactPhone: Contact phone number for the application.

TU Latch | API Documentation

 26

● two_factor (Optional): Value for two-factor authentication.

Possible values: MANDATORY, OPT_IN, DISABLED. Default value is

DISABLED.

● lock_on_request (Optional): Value for locking after querying.

Possible values: MANDATORY, OPT_IN, DISABLED. Default value is

DISABLED.

Response

If everything goes well, the API will return an empty JSON response that looks

like this:

{}

Remove an application

To delete an application, make an HTTP DELETE request to the following

endpoint:

https://latch.tu.com/api/2.0/application/{applicationId}

where applicationId is the identifier of that application.

Response

If everything goes well, the API will return an empty JSON response that looks

like this:

{}

View your applications

To view your applications, make an HTTP GET request to the following

endpoint:

https://latch.tu.com/api/2.0/application

TU Latch | API Documentation

 27

Response

If everything goes well, the API will return a response that looks like this:

{"data":{"operations":{"applicationId":{"name":"...","two_factor

":"...","lock_on_request":"...","operations":{...}}}}}

Errors

Below is a list of possible error conditions that can occur when attempting to

use this API:

● Error 111: User not authorized

This error occurs when the current subscription plan of the user does not

include the user API.

● Error 301: Application or Operation not found

This error occurs when the application identifier used does not match a

valid application identifier.

● Error 401: Missing parameter in API call

● Error 402: Invalid parameter value

This error occurs when some parameters have an incorrect format, such

as email addresses, phone numbers, or names.

● Error 703: Application or Operation not created due to subscription limits

This error occurs when trying to create an application outside the

subscription limits.

1.3.2. Developer Subscription

This page describes how to obtain the subscription information of a user.

Authentication

To use this request, you must authenticate your app using your userId and sign

it as explained in the Authentication section.

TU Latch | API Documentation

 28

Requests

View subscription

To obtain the subscription information, make an HTTP GET request to the

following endpoint:

https://latch.tu.com/api/2.0/subscription

Response

If everything goes well, the API will return a JSON response that looks like this:

{"data":{"subscription":{"id":"subcriptionName","applications":{

"inUse":X,"limit":X},"operations":{"appName1":{"inUse":X,"limit"

:X},"users":{"inUse":X,"limit":X}}}}

where the information contained is:

● subscriptionName: The name of the current subscription.

● inUse: The number of applications, users, or operations currently in use.

● limit: The maximum number allowed for the current subscription plan. -1

for unlimited.

Errors

Below is a list of possible error conditions that may occur when attempting to

use this API:

● Error 111: User not authorized

This error occurs when the current subscription plan of the user does not

include the user API.

TU Latch | API Documentation

 29

1.4. TOTP Server

1.4.1. Create TOTP

This service acts as a TOTP (Time-based One-Time Password) server that

enables you to create, manage, and validate time-based one-time passwords.

It provides an API to create and manage these TOTPs and secrets associated

with different users. The main functionalities include:

● Create a TOTP: Allows users to create a TOTP for authentication.

● Delete a TOTP: TOTPs created can be deleted when no longer needed.

● Get TOTP information: You can query information about a specific

TOTP.

● Validate a TOTP: Allows validating a TOTP code provided by a user.

The sequence of operations and their use is represented in the following

diagram:

TU Latch | API Documentation

 30

Authentication

To use this request, you must authenticate your app using your applicationId

and sign it as explained in the Authentication section.

TU Latch | API Documentation

 31

Request

Create a new TOTP for a given user. userId (the user identifier) and

commonName (the common name of the TOTP) are required.

POST https://latch.tu.com/api/3.0/totps

Parameters:

• userId: The identifier that will be associated with the user (provider-

dependent).

• commonName: The name associated with the user (provider-dependent).

Response

If everything goes well, the API will respond with the information related to the

TOTP:

{

 "data": {

 "totpId": "identificador del TOTP",

 "secret": "secreto del TOTP",

 "appId": "identificador de la app de Latch",

 "identity": {

 "id": "identificador del usuario",

 "name": "nombre del usuario"

 },

 "issuer": "nombre de la app",

 "algorithm": "algoritmo del TOTP",

 "digits": "dígitos del TOTP",

 "period": "período del TOTP",

 "createdAt": "fecha de creación",

 "qr": "imagen del código QR en base64",

 "uri": "URI del TOTP, formato otpauth"

 }

}

TU Latch | API Documentation

 32

Errors

Below is a list of possible error conditions that can occur when attempting to

use this API:

• Error 301: Application or Operation not found

This error occurs when the application identifier used does not match a

valid application identifier.

• Error 304: No totp server configured

No TOTP Server configured for this app.

• Error 401: Missing parameter in API call

Invalid parameters.

• Error 307: Unable to generate totp

Could not generate the secret for the TOTP. Internal error.

1.4.2. Delete TOTP

Authentication

To use this request, you must authenticate your app using your applicationId

and sign it as explained in the Authentication section.

Request

Delete a specific TOTP using its identifier totpId.

DELETE https://latch.tu.com/api/3.0/totps/{totpId}

Parameters:

• totpId: Identifier of the TOTP you want to delete.

Response

If everything goes well, an HTTP RESPONSE 204 will be returned.

TU Latch | API Documentation

 33

Errors

Below is a list of possible error conditions that can occur when attempting to

use this API:

● Error 304: No totp server configured

No TOTP Server configured for this app.

● Error 305: App totp not found

TOTP not found.

1.4.3. Get TOTP

Authentication

To use this request, you must authenticate your app using your applicationId

and sign it as explained in the Authentication section.

Request

Returns the information of a specific TOTP based on its totpId.

GET https://latch.tu.com/api/3.0/totps/{totpId}

Parameters:

● totpId: Identifier of the TOTP you want to retrieve.

Response

If everything goes well, the API will respond with the information related to the

TOTP:

{

 "data": {

 "totpId": "identificador del TOTP",

TU Latch | API Documentation

 34

 "secret": "secreto del TOTP",

 "appId": "identificador de la app de Latch",

 "identity": {

 "id": "identificador del usuario",

 "name": "nombre del usuario"

 },

 "issuer": "nombre de la app",

 "algorithm": "algoritmo del TOTP",

 "digits": "dígitos del TOTP",

 "period": "período del TOTP",

 "createdAt": "fecha de creación",

 "qr": "imagen del código QR en base64",

 "uri": "URI del TOTP, formato otpauth"

 }

}

Errors

Below is a list of possible error conditions that can occur when attempting to

use this API:

• Error 304: No totp server configured

No TOTP Server configured for this app.

• Error 305: App totp not found

TOTP not found.

TU Latch | API Documentation

 35

1.4.4. Validate TOTP

Authentication

To use this request, you must authenticate your app using your applicationId

and sign it as explained in the Authentication section.

Request

Validates a specific TOTP code provided by the user. The totpId identifies the

TOTP, and code is the generated code you want to validate.

POST https://latch.tu.com/api/3.0/totps/{totpId}/validate

Parameters:

● totpId: Identifier of the TOTP used to validate the algorithm against the
provided code.

● code: The code provided by the end user, to be validated using the
algorithm specified by totpId.

Response

In both cases, an HTTP code of 200 is returned:

Correct code:

{}

Incorrect Code:

{"error": {

 "code": 306,

 "message": "Invalid totp code"

 }

}

Errors

Below is a list of possible error conditions that can occur when attempting to

use this API:

TU Latch | API Documentation

 36

• Error 304: No totp server configured

No TOTP Server configured for this app.

• Error 305: App totp not found

TOTP not found.

• Error 306: Invalid totp code

The code is invalid according to the stored parameters and the current

timestamp.

• Error 307: Unable to generate totp

Error retrieving TOTP generation parameters.

• Error 401: Missing parameter in API call

Some of the input parameters do not exist.

• Error 402: Invalid parameter value

Invalid parameters.

• Error 708: TOTP not validated due to subscription limits

TOTP not valid due to developer subscription limits.

1.5. Authorization Controls

Introduction

The Authorization Controls feature in the Latch product allows you to establish a

mechanism for managing the approval of actions within a system, based on the

intervention of one or more users. This feature is useful in scenarios where

explicit approval from certain users is required before a process or flow can

proceed.

Creating an Authorization Control

Authorization controls are created via the tool called LST. From LST,

administrators or users with permissions can define a new rule or control that

manages approvals for a specific group of users.

TU Latch | API Documentation

 37

Steps to create an authorization control

1. Access the LST tool.

2. Select the option to create a new Authorization Control.

3. Specify the users involved in the control.

4. Define whether the control should be based on:

○ Unanimous Approval (TODOS): The flow or action is only

allowed if all selected users approve the request.

○ Partial Approval (ALGUNO): The flow or action is allowed if at

least one of the selected users approves the request.

5. Save the authorization control.

Identification of the Authorization Control

Each authorization control created has a unique identifier called controlID. This

controlID is essential for interacting with this feature through the system's API,

enabling subsequent queries or modifications to that specific control.

Using the API for Authorization Controls

Once an authorization control has been created, it can be managed or queried

through the Latch APIs. The controlID will be the main identifier used to perform

any operation on that control.

Available operations via API:

● Consult an authorization control: Retrieve the details of the control,

including the associated users and approval rules (TODOS or ALGUNO).

● Update an authorization control: Modify the users or the approval

conditions.

● Delete an authorization control: Remove an authorization control if it is

no longer needed.

TU Latch | API Documentation

 38

Example Use Scenario

Suppose a business flow requires the approval of three users before completing

a transaction. You can configure an authorization control in Latch where:

● All three users involved are added to the control.

● It is defined that approval must be unanimous—i.e., all users must

approve before the transaction is executed.

In another case, if it is required that only one of the three users is able to

approve in order to proceed, you would configure the control with the ALGUNO

option.

Conclusion

The Authorization Controls feature in Latch offers a flexible and powerful way to

manage user approvals, enabling configurations based on both all users

involved or any user from the group. Integration with LST and the availability

through an API makes it easy to use both via a graphical interface and through

automation in external applications.

Authentication

To use this request, you must authenticate your app using your applicationId

and sign it as explained in the Authentication section.

Request

Query the status of a given authorization control.

GET https://latch.tu.com/api/3.0/control-status/{controlId}

Parameters:

● controlId: Identifier of the authorization control to query.

TU Latch | API Documentation

 39

Response

If everything goes well, the API will respond with information about the status of

the authorization control controlId:

{

 "data": {

 "status": "on" | "off"

 }

}

Errors

Below is a list of possible error conditions that can occur when attempting to

use this API:

• Error 113: Secret signing this request is not authorized to perform this

operation

The appId/secret signature is not authorized to perform this operation.

• Error 301: Application or Operation not found

This error occurs when the operation identifier used does not match a

valid operation identifier.

• Error 302: Instance not found

This error occurs when the instance identifier used does not match a

valid instance identifier.

• Error 1100: Authorization control not found

The authorization control identifier was not found.

• Error 1104: Error checking authorization control status

Error querying the authorization control.

TU Latch | API Documentation

 40

2. Webhooks

WebHooks allow developers to receive real-time notifications when their paired

users perform actions through the mobile app.

Once a URI is registered to receive WebHooks, Latch will start sending HTTP

requests to that URI each time there are changes for any of your users.

2.1. Add a Webhook

To add a new WebHook, go to your application page in 'My Applications'.

Then, add the full URI of your WebHook without including a query (e.g.,

https://www.example.com/hook) in the "WebHooks" section. Note that this URI

needs to be publicly accessible on the Internet; i.e., URIs like 127.0.0.1 or

localhost are not valid because Latch will not be able to communicate with your

local network.

Once you have entered a URI for a WebHook, a verification request will be sent

to that URI. This verification is an HTTP GET request that includes a challenge

parameter. Your WebHook must echo this parameter in order to be verified.

This verification is performed to ensure that your application indeed wants to

receive notifications at that URI. If you accidentally entered an incorrect URI (or

if someone maliciously added your server as a WebHook), your application will

not respond correctly to the challenge, and Latch will not send notifications to

that URI.

Example:

GET https://www.example.com/hook?challenge=ABC123

If your WebHook successfully responds to the above challenge, Latch will start

sending notifications to the WebHook URI with changes for your users (see the

WebHook Notifications tab for more information). Otherwise, you will see an

error message indicating the problem encountered.

NOTE: Your URI only has ten seconds to

TU Latch | API Documentation

 41

2.2. Webhook Notifications

When a WebHook URI is added, you start receiving notification requests each

time one of your users makes a change in your application.

A notification request is an HTTP POST request that includes JSON in its body.

Note that multiple simultaneous changes for multiple users can be included in

the same notification. You can find the specific JSON format for each type of

notification below.

Notification Signature

Each notification request will include an HTTP header X-11paths-Authorization

consisting of the HMAC-SHA1 signature of the request body (the application's

secret is used as the signing key). This allows your application to verify that the

notification comes from Latch. It is advisable to check the signature validity for

each notification received.

Lock / unlock of a latch

This notification is sent each time a user modifies the latch of your application or

any of its internal operations.

 {

 "t":1457913600,

 "accounts":{

 "ACCOUNT_ID1":[

 {

 "type":"UPDATE",

 "id":"APP_OR_OPERATION_ID | GLOBAL_LATCH",

 "source":"USER_UPDATE | DEVELOPER_UPDATE",

 "new_status":"on | off | interval"

 },

 { ... }

TU Latch | API Documentation

 42

],

 "ACCOUNT_ID2":[

 ...

]

 }

 }

Information:

● t: The UTC timestamp when Latch sends this notification.

● ACCOUNT_ID: The accountId of your users, obtained during the pairing

phase.

● id: The identifier of the application or operation of the latch that the user

just modified. If the user modifies the master latch of all applications, the

value will be GLOBAL_LATCH.

● source: If the change was made by the user (USER_UPDATE) or by the

developer using the support API or the LST tool

(DEVELOPER_UPDATE).

● new_status: The new latch status: on for unlocked, off for locked, or

interval if the user has activated the "scheduled lock" option for that latch.

3. Limited Secrets

Each Latch application provides an application identifier (appId) and a secret.

This pair of credentials allows requests to the API to be signed to ensure they

are made by the legitimate owner of that application. However, there are

multiple scenarios in which the secret can be compromised (desktop

applications, mobile apps, etc.).

In these scenarios, a compromised secret could allow a potential attacker to

perform unwanted API operations. To avoid this, you can create up to 3 limited

TU Latch | API Documentation

 43

secrets for each application, each with restricted scope. These secrets are

used in the same way as the master secret, but can only be used to sign those

requests for which they have been configured.

A limited secret can contain one or more of the following permissions:

• Status: Allows making status calls to the API, to check the status of a

Latch.

• Pairings: Allows using the calls to pair and unpair a user.

• Support: Allows using the support calls of the API to lock and unlock

latches.

• History: Allows querying the history of actions for a service.

• Operations: Grants access to perform the calls that manage operations.

This management allows creating, editing, querying, and deleting

operations.

• Instances: Grants access to perform the calls that manage instances.

This management allows creating, editing, querying, and deleting

instances. To check the status of an instance, the STATUS permission is

used, and to modify its status, the SUPPORT permission is required.

• TOTP Server: Grants access to perform the calls that manage TOTPs.

• Number of Quantum Secrets: Grants access to perform calls that

manage quantum secrets.

• Authorization Controls: Grants access to perform calls that manage

authorization controls.

4. Deep Linking

4.1. What is deep linking?

'Deep linking' is a technique that allows launching native mobile applications

through a link.

TU Latch | API Documentation

 44

Deep linking makes it possible to connect a unique URL with a specific action in

a mobile application; depending on the mobile platform, the URIs required to

launch the application may vary.

These are the functionalities of our applications currently available through deep

linking. At the moment, they are only available for Android and iOS:

● Launch the Latch application.

4.2. Deep Linking in Latch Applications

You can use any of these URI resources from either a web browser or a native

mobile application:

Launch the Latch application

Android

latch://launch

iOS

latch://launch

TU Latch | API Documentation

 45

2025 © Telefónica Innovación Digital S.L. All rights reserved

	1. API Documentation
	1.1. Authentication
	1.1.1. The Authorization Header
	1.1.2. The X-11Paths-Date Header
	1.2. Aplication API
	1.2.1. Pair Account
	1.2.2. Check Status
	1.2.3. Unpair Account
	1.2.4. Modify Status
	1.2.5. Manage Operations
	1.2.6. User History
	This page describes how to query the history of an account.
	1.2.7. Manage instances
	1.2.8. Set CommonName
	This page describes how to edit a common name for a paired user.

	1.3. User API
	1.3.1. Manage Applications
	This page describes how to manage a user's applications, allowing you to add, update, or delete applications.
	1.3.2. Developer Subscription
	1.4. TOTP Server
	1.4.1. Create TOTP
	1.4.2. Delete TOTP
	1.4.3. Get TOTP
	1.4.4. Validate TOTP
	1.5. Authorization Controls
	2. Webhooks
	2.1. Add a Webhook
	2.2. Webhook Notifications
	3. Limited Secrets
	4. Deep Linking
	4.1. What is deep linking?
	4.2. Deep Linking in Latch Applications

